当前位置 : 主页 > 手机开发 > harmonyos >

cf 602 B(模拟)

来源:互联网 收集:自由互联 发布时间:2023-08-28
B. Approximating a Constant Range time limit per test memory limit per test input output When Xellos was doing a practice course in university, he once had to measure the intensity of an effect that slowly approached equilibrium. A good way


B. Approximating a Constant Range



time limit per test



memory limit per test



input



output


When Xellos was doing a practice course in university, he once had to measure the intensity of an effect that slowly approached equilibrium. A good way to determine the equilibrium intensity would be choosing a sufficiently large number of consecutive data points that seems as constant as possible and taking their average. Of course, with the usual sizes of data, it's nothing challenging — but why not make a similar programming contest problem while we're at it?

n data points a1, ..., an. There aren't any big jumps between consecutive data points — for each 1 ≤ i < n, it's guaranteed that |ai + 1 - ai| ≤ 1.

[l, r] of data points is said to be almost constant if the difference between the largest and the smallest value in that range is at most 1. Formally, let M be the maximum and m the minimum value of ai for l ≤ i ≤ r; the range [l, r] is almost constant if M - m ≤ 1.

Find the length of the longest almost constant range.


Input



n (2 ≤ n ≤ 100 000) — the number of data points.

n integers a1, a2, ..., an (1 ≤ ai).


Output



Print a single number — the maximum length of an almost constant range of the given sequence.


Sample test(s)



input



5 1 2 3 3 2



output



4



input



11 5 4 5 5 6 7 8 8 8 7 6



output



5


Note



[2, 5]; its length (the number of data points in it) is 4.

4: [1, 4], [6, 9] and [7, 10]; the only almost constant range of the maximum length 5 is [6, 10].

#include <bits/stdc++.h>
using namespace std;
multiset <int> s;
int a[100005];
int main()
{
    int n,ans=0;
    scanf("%d",&n);
    for(int i=0;i<n;i++)
        scanf("%d",a+i);
    int j=0,i=0;
    while(j<n)
    {
        s.insert(a[j]);
        if(abs(*s.begin()-*s.rbegin())>1)
        {
            s.erase(s.find(a[i]));
            i++;
        }
        ans=max(ans,int(s.size()));
        j++;
    }
    printf("%d\n",ans);
    return 0;
}




上一篇:POJ 2828(线段树 单点更新)
下一篇:没有了
网友评论