题意:求满足条件的排列,1:从左往右会遇到a个比当前数大的数,(每次遇到更大的数会更换当前数)2.从右往左会遇到b个比当前数大的数. 题解:1-n的排列,n肯定是从左往右和从右往左的最后一
题意:求满足条件的排列,1:从左往右会遇到a个比当前数大的数,(每次遇到更大的数会更换当前数)2.从右往左会遇到b个比当前数大的数.
题解:1-n的排列,n肯定是从左往右和从右往左的最后一个数.
考虑\(S(n,m)\)是1-n排列中从左往右会遇到m个比当前数大的数,考虑把1放在最左边,即\(S(n-1,m-1)\),考虑1不在最左边,有n-1个位置,1不可能会更换\((n-1)*S(n,m)\).即\(S(n,m)=S(n-1,m-1)+(n-1)*S(n-1,m)\)
\(S(n,m)\)即第一类斯特林数.答案即\(S(n-1,a+b-2)*C(a+b-2,a-1)\)
\(S(n,*)\)的生成函数即\(\prod_{i=0}^{n-1}(x+i)\),即x的n次上升幂.
\(F_n(x)=\prod_{i=0}^{n-1}(x+i)\),\(F_n(x+n)=\prod_{i=0}^{n-1}(x+n+i)\)
\(F_{2n}(x)=F_n(x)*F_n(x+n)\)
\(F_n(x)=\sum_{i=0}^{n-1}a_ix^i\),\(F_n(x+n)=\sum_{i=0}^{n-1}x^i*\sum_{j=i}^{n-1}\frac{j!}{i!*(j-i)!}n^{j-i}a_j\)
先卷积出\(F_n(x+n)\),然后卷积出\(F_{2n}(x)\),当n不能整除2时,单独考虑乘(x+n-1).
递归处理,复杂度\(O(nlogn)\)
//#pragma GCC optimize(2) //#pragma GCC optimize(3) //#pragma GCC optimize(4) //#pragma GCC optimize("unroll-loops") //#pragma comment(linker, "/stack:200000000") //#pragma GCC optimize("Ofast,no-stack-protector") //#pragma GCC target("sse,sse2,sse3,ssse3,sse4,popcnt,abm,mmx,avx,tune=native") #include<bits/stdc++.h> //#include <bits/extc++.h> #define fi first #define se second #define db double #define mp make_pair #define pb push_back #define mt make_tuple //#define pi acos(-1.0) #define ll long long #define vi vector<int> #define mod 998244353 #define ld long double //#define C 0.5772156649 #define ls l,m,rt<<1 #define rs m+1,r,rt<<1|1 #define pll pair<ll,ll> #define pil pair<int,ll> #define pli pair<ll,int> #define pii pair<int,int> #define ull unsigned long long #define bpc __builtin_popcount #define base 1000000000000000000ll #define fin freopen("a.txt","r",stdin) #define fout freopen("a.txt","w",stdout) #define fio ios::sync_with_stdio(false);cin.tie(0) #define mr mt19937 rng(chrono::steady_clock::now().time_since_epoch().count()) inline ll gcd(ll a,ll b){return b?gcd(b,a%b):a;} inline void sub(ll &a,ll b){a-=b;if(a<0)a+=mod;} inline void add(ll &a,ll b){a+=b;if(a>=mod)a-=mod;} template<typename T>inline T const& MAX(T const &a,T const &b){return a>b?a:b;} template<typename T>inline T const& MIN(T const &a,T const &b){return a<b?a:b;} inline ll mul(ll a,ll b,ll c){return (a*b-(ll)((ld)a*b/c)*c+c)%c;} inline ll qp(ll a,ll b){ll ans=1;while(b){if(b&1)ans=ans*a%mod;a=a*a%mod,b>>=1;}return ans;} inline ll qp(ll a,ll b,ll c){ll ans=1;while(b){if(b&1)ans=mul(ans,a,c);a=mul(a,a,c),b>>=1;}return ans;} using namespace std; //using namespace __gnu_pbds; const ld pi = acos(-1); const ull ba=233; const db eps=1e-5; const ll INF=0x3f3f3f3f3f3f3f3f; const int N=100000+10,maxn=2000000+10,inf=0x3f3f3f3f; ll x[N<<3],y[N<<3]; int rev[N<<3]; void getrev(int bit) { for(int i=0;i<(1<<bit);i++) rev[i]=(rev[i>>1]>>1) | ((i&1)<<(bit-1)); } void ntt(ll *a,int n,int dft) { for(int i=0;i<n;i++) if(i<rev[i]) swap(a[i],a[rev[i]]); for(int step=1;step<n;step<<=1) { ll wn=qp(3,(mod-1)/(step*2)); if(dft==-1)wn=qp(wn,mod-2); for(int j=0;j<n;j+=step<<1) { ll wnk=1; for(int k=j;k<j+step;k++) { ll x=a[k]; ll y=wnk*a[k+step]%mod; a[k]=(x+y)%mod;a[k+step]=(x-y+mod)%mod; wnk=wnk*wn%mod; } } } if(dft==-1) { ll inv=qp(n,mod-2); for(int i=0;i<n;i++)a[i]=a[i]*inv%mod; } } ll f[N],inv[N]; ll C(int a,int b) { if(a<b||a<0||b<0)return 0; return f[a]*inv[b]%mod*inv[a-b]%mod; } vi solve(int n) { if(n==1) { vi v={0,1}; return v; } vi te=solve(n/2); int sz=0,m=te.size(); while((1<<sz)<m)sz++;sz++; int len=1<<sz; getrev(sz); ll p=1; for(int i=0;i<m;i++) { x[i]=qp(n/2,m-i-1)*inv[m-i-1]%mod; y[i]=te[i]*f[i]%mod; } for(int i=m;i<len;i++)x[i]=y[i]=0; ntt(x,len,1);ntt(y,len,1); for(int i=0;i<len;i++)x[i]=x[i]*y[i]%mod; ntt(x,len,-1); for(int i=0;i<m;i++)y[i]=x[i+m-1]*inv[i]%mod; for(int i=0;i<m;i++)x[i]=te[i]; for(int i=m;i<len;i++)x[i]=y[i]=0; ntt(x,len,1);ntt(y,len,1); for(int i=0;i<len;i++)x[i]=x[i]*y[i]%mod; ntt(x,len,-1); vi v;v.resize(len+1); if(n&1) { y[0]=n-1;y[1]=1; for(int i=0;i<len;i++) for(int j=0;j<2;j++) { v[i+j]+=x[i]*y[j]%mod; if(v[i+j]>=mod)v[i+j]-=mod; } } else { for(int i=0;i<len;i++)v[i]+=x[i]; } while(v.size()&&v.back()==0)v.pop_back(); return v; } int main() { f[0]=inv[0]=1; for(int i=1;i<N;i++)f[i]=f[i-1]*i%mod,inv[i]=inv[i-1]*qp(i,mod-2)%mod; int n,a,b;scanf("%d%d%d",&n,&a,&b); if(a+b-1>n)return 0*puts("0"); if(n==1) { if(a==b&&a==1)puts("1"); else puts("0"); return 0; } vi v=solve(n-1); printf("%lld\n",1ll*v[a+b-2]*C(a+b-2,a-1)%mod); return 0; } /******************** ********************/