目录 符号说明 示例数据 一、Hit Rate 二、Recall 三、NDCG 符号说明 \(top\_k\) : 当前用户预测分最高的k个items,预测分由高到低排序 $pos$: 当前用户实际点击过的items \(N\) : 测试用户数量 示例
- 符号说明
- 示例数据
- 一、Hit Rate
- 二、Recall
- 三、NDCG
\(top\_k\): 当前用户预测分最高的k个items,预测分由高到低排序
$pos$: 当前用户实际点击过的items
\(N\): 测试用户数量
示例数据N = 4
网上有2种定义方式,不知道哪个更为正确的,有知道的人能不能麻烦告诉我一下?
第一种
对所有用户:我们真正喜欢的物品中,你给我们推荐了多少
hit = 0
total = 0
for i in users:
top_k = 获取top_k的代码
hit += len(top_k & pos)
total += len(pos)
hit_rate = hit / total
\(hit\_rate = \frac{1 + 2 + 3 + 0}{2 + 3 + 4 + 5}\)
第二种
被推荐到喜欢物品的用户占总用户的比例
hit = 0
for i in users:
top_k = 获取top_k的代码
if top_k中有预测到pos中的item:
hit += 1
hit_rate = hit / N
\(hit\_rate = \frac{1 + 1 + 1 + 0}{4}\)
二、Recall对某个用户:我真正喜欢的物品中,你给我推荐了多少
recall = 0
for i in users:
top_k = xxx(i)
recall += len(top_k & pos) / len(pos) # 用户i的recall
recall = mean(recall)
\(recall = (\frac{1}{2} + \frac{2}{3} + \frac{3}{4} + \frac{0}{3})\ /\ 4\)
三、NDCG对某个用户:实际的折扣累计收益 DCG (Discounted Cumulative Gain) / 理想的DCG
DCG:考虑位置因素,希望用户喜欢的物品在top_k中排得越前越好
iDCG:归一化,解决【不同用户的DCG求和项数不同,不能进行比较】的问题
NDCG = 0
for i in users:
DCG = 0
iDCG = 0
top_k = xxx(i)
for rank in range(k):
if top_k[rank] in pos:
DCG += 1 / log2(rank + 2)
for i in range(min(k, len(pos))):
iDCG += 1 / log2(i + 2)
NDCG_u = DCG / iDCG
NDCG += NDCG_u
NDCG = mean(NDCG)
参考链接-两种不同的hit rate定义方式 [https://www.cnblogs.com/leimu/p/13564214.html]() [https://blog.csdn.net/yanguang1470/article/details/123036806]()