图 2.1 import matplotlib as mpl import matplotlib.pyplot as plt mpl.rcParams['font.sans-serif']=['SimHei'] mpl.rcParams['axes.unicode_minus']=False x=[1,2,3,4,5,6,7,8] y=[3,1,4,5,8,9,7,2] plt.bar(x, y, align='center',color='c', tick_label=
图 2.1
import matplotlib.pyplot as plt
mpl.rcParams['font.sans-serif']=['SimHei']
mpl.rcParams['axes.unicode_minus']=False
x=[1,2,3,4,5,6,7,8]
y=[3,1,4,5,8,9,7,2]
plt.bar(x, y, align='center',color='c', tick_label=['q','a','c','e','r',
'j','b', 'p'], hatch='/')
plt.xlabel('箱子编号')
plt.ylabel('箱子重量(kg)')
plt.show()
View Code
===================================================
图 2.2
import matplotlib.pyplot as plt
mpl.rcParams['font.sans-serif']=['SimHei']
mpl.rcParams['axes.unicode_minus']=False
x=[1,2,3,4,5,6,7,8]
y=[3,1,4,5,8,9,7,2]
plt.barh(x, y, align='center',color='c', tick_label=['q','a','c','e','r',
'j','b', 'p'], hatch='/')
plt.ylabel('箱子编号')
plt.xlabel('箱子重量(kg)')
plt.show()
View Code
===================================================
图 2.3
import matplotlib.pyplot as plt
import numpy as np
mpl.rcParams['font.sans-serif']=['SimHei']
mpl.rcParams['axes.unicode_minus']=False
boxWeight=np.random.randint(0,10,100)
x=boxWeight
bins=range(0,11,1)
plt.hist(x, bins=bins, color='g', histtype='bar', rwidth=1, alpha=0.6, edgecolor='black')
plt.xlabel('箱子重量 (kg)')
plt.ylabel('销售数量 (个)')
plt.show()
View Code
===================================================
图 2.4
import matplotlib.pyplot as plt
import numpy as np
mpl.rcParams['font.sans-serif']=['SimHei']
mpl.rcParams['axes.unicode_minus']=False
kinds=['简易箱','保温箱','行李箱','密封箱']
colors=['#e41a1c', '#377eb8', '#4daf4a', '#984ea3']
soldNums=[0.05, 0.45, 0.15, 0.35]
plt.pie(soldNums, labels=kinds, autopct='%3.1f%%', startangle=60, colors=colors)
plt.title('不同箱子类型的销售数量占比')
plt.show()
View Code
===================================================
图 2.5
import matplotlib.pyplot as plt
import numpy as np
barSlices=18
theta=np.linspace(0.0, 2*np.pi, barSlices, endpoint=False)
r=30*np.random.rand(barSlices)
plt.polar(theta, r, color='chartreuse', linewidth=2, marker='*', mfc='b', ms=10)
plt.show()
View Code
===================================================
图 2.6
import matplotlib.pyplot as plt
import numpy as np
a=np.random.randn(100)
b=np.random.randn(100)
plt.scatter(a, b, s=np.power(10*a+20*b,2),
c=np.random.rand(100), cmap=mpl.cm.RdYlBu,marker='o')
plt.show()
View Code
===================================================
图 2.7
import matplotlib.pyplot as plt
import numpy as np
x=np.linspace(0.5, 2*np.pi, 20)
y=np.random.randn(20)
plt.stem(x,y,linefmt='-.', markerfmt='*', basefmt='-')
plt.show()
View Code
===================================================
图 2.8
import matplotlib.pyplot as plt
import numpy as np
mpl.rcParams['font.sans-serif']=['SimHei']
mpl.rcParams['axes.unicode_minus']=False
x=np.random.randn(1000)
plt.boxplot(x)
plt.xticks([1], ['随机数生成器AlphaRM'])
plt.ylabel("随机数值")
plt.title("随机数生成器抗干扰能力的稳定性")
plt.grid(axis='y', ls=':', lw=1, color='gray', alpha=0.4)
plt.show()
View Code
===================================================
图 2.9
import matplotlib.pyplot as plt
import numpy as np
x=np.linspace(0.1, 0.6, 6)
y=np.exp(x)
plt.errorbar(x, y, fmt='bo:', yerr=0.2, xerr=0.02)
plt.xlim(0, 0.7)
plt.show()
View Code