一、常见的K8S按照部署方式
1、Minikube
Minikube是一个工具,可以在本地快速运行-一个单节点微型K8s,仅用于学习、预览K8S的一些特性使用。
部署地址: https://kubernetes.io/docs/setup/minikube
2、Kubeadmin
Kubeadmin也是一个工具,提供kubeadm init和kubeadm join,用于快速部署K8S集群,相对简单。
部署地址:https://kubernetes.io/docs/reference/setup-tools/kubeadm/kubeadm/
3、二进制安装部署
生产首选,从官方下载发行版的二进制包,手动部署每个组件和自签TLS证书,组成K8S集群,新手推荐。
部署地址:https://github.com/kubernetes/kubernetes/releases
二、K8S单master集群部署(二进制)
1、准备
master01(ectd节点1):192.168.132.50
node01(ectd节点2):192.168.132.51
node02(ectd节点3):192.168.132.52
#关闭防火墙systemctl stop firewalld
systemctl disable firewalld
iptables -F && iptables -t nat -F && iptables -t mangle -F && iptables -X
#关闭SE安全中心
setenforce 0
sed -i 's/enforcing/disabled/' /etc/selinux/config
#关闭swap
swapoff -a #临时关闭
sed -ri 's/.*swap.*/#&/' /etc/fstab #永久关闭,&符号代表前面匹配的所有
#根据规划设置主机名(各自的)
hostnamectl set-hostname master01
hostnamectl set-hostname node01
hostnamectl set-hostname node02
#在master添加hosts
cat >> /etc/hosts << EOF
192.168.132.50 master01
192.168.132.51 node01
192.168.132.52 node02
EOF
#将桥接的IPv4流量传递到iptables的链
cat > /etc/sysctl.d/k8s.conf <<EOF
net.bridge.bridge-nf-call-ip6tables = 1
net.bridge.bridge-nf-call-iptables = 1
EOF
sysctl --system
#时间同步,可以加入计划任务定时执行减小偏差
yum install ntpdate -y
ntpdate time.windows.com
2、部署 etcd 集群
etcd是Core0S团队于2013年6月发起的开源项目,它的目标是构建一个高可用的分布式键值(key-value) 数据库。etcd内部采用raft协议
作为一致性算法,etcd是go语言编写的。
etcd作为服务发现系统,有以下的特点
- 简单:安装配置简单,而且提供了HTTP API进行交互,使用也很简单
- 安全:支持SSL证书验证
- 快速:单实例支持每秒2k+读操作
- 可靠:采用raft算法,实现分布式系统数据的可用性和一致性
etcd目前默认使用2379端口提供HTTP API服务,2380端口和peer通信(这两个端口已经被IANA(互联网数字分配机构)官方预留给etcd)。即etcd默认使用2379端口对外为客户端提供通讯,使用端口2380来进行服务器间内部通讯。etcd在生产环境中一般推荐集群方式部署。由于etcd的leader选举机制,要求至少为3台或以上的奇数台。
3、准备签发证书环境
CFSSL是CloudFlare 公司开源的一款PKI/TLS 工具。CFSSL包含一个命令行工具和一个用于签名、验证和捆绑TLS证书的HTTP API服务。使用Go语言编写。
CFSSL使用配置文件生成证书,因此自签之前,需要生成它识别的json格式的配置文件,CFSSL提供了方便的命令行生成配置文件。
CFSSL 用来为etcd提供TLS证书,它支持签三种类型的证书
- client 证书 服务端连接客户端时携带的证书,用于客户端验证服务端身份,如kube-apiserver访问etcd;
- server证书 客户端连接服务端时携带的证书,用于服务端验证客户端身份,如etcd对外提供服务;
- peer证书 相互之间连接时使用的证书,如etcd节点之间进行验证和通信。
这里全部都使用同一套证书认证。
4、在master01节点上操作
1.下载证书制作工具
wget https://pkg.cfssl.org/R1.2/cfssl_linux-amd64 -O /usr/local/bin/cfsslwget https://pkg.cfssl.org/R1.2/cfssljson_linux-amd64 -O /usr/local/bin/cfssljson
wget https://pkg.cfssl.org/R1.2/cfssl-certinfo_linux-amd64 -O /usr/local/bin/cfssl-certinfo
chmod +x /usr/local/bin/cfssl*
cfssl:证书签发的工具命令
cfssljson:将cfssl生成的证书(json格式)变为文件承载式证书
cfssl-certinfo:验证证书的信息
cfssl-certinfo -cert <证书名称> #查看证书的信息
2.生成Etcd证书
#创建k8s工作目录mkdir /opt/k8s
cd /opt/k8s/
#上传 etcd-cert.sh 和 etcd.sh 到 /opt/k8s/ 目录中
chmod +x etcd-cert.sh etcd.sh
#创建用于生成CA证书、etcd 服务器证书以及私钥的目录
mkdir /opt/k8s/etcd-cert
mv etcd-cert.sh etcd-cert/
cd /opt/k8s/etcd-cert/
./etcd-cert.sh #生成CA证书、etcd 服务器证书以及私钥vim etcd-cert.sh
#!/bin/bash
#配置证书生成策略,让 CA 软件知道颁发有什么功能的证书,生成用来签发其他组件证书的根证书
cat > ca-config.json <<EOF
{
"signing": {
"default": {
"expiry": "87600h"
},
"profiles": {
"www": {
"expiry": "87600h",
"usages": [
"signing",
"key encipherment",
"server auth",
"client auth"
]
}
}
}
}
EOF
#ca-config.json:可以定义多个 profiles,分别指定不同的过期时间、使用场景等参数;
#后续在签名证书时会使用某个 profile;此实例只有一个 www 模板。
#expiry:指定了证书的有效期,87600h 为10年,如果用默认值一年的话,证书到期后集群会立即宕掉
#signing:表示该证书可用于签名其它证书;生成的 ca.pem 证书中 CA=TRUE;
#key encipherment:表示使用非对称密钥加密,如 RSA 加密;
#server auth:表示client可以用该 CA 对 server 提供的证书进行验证;
#client auth:表示server可以用该 CA 对 client 提供的证书进行验证;
#注意标点符号,最后一个字段一般是没有逗号的。
#-----------------------
#生成CA证书和私钥(根证书和私钥)
#特别说明: cfssl和openssl有一些区别,openssl需要先生成私钥,然后用私钥生成请求文件,最后生成签名的证书和私钥等,但是cfssl可以直接得到请求文件。
cat > ca-csr.json <<EOF
{
"CN": "etcd",
"key": {
"algo": "rsa",
"size": 2048
},
"names": [
{
"C": "CN",
"L": "Beijing",
"ST": "Beijing"
}
]
}
EOF
#CN:Common Name,浏览器使用该字段验证网站或机构是否合法,一般写的是域名
#key:指定了加密算法,一般使用rsa(size:2048)
#C:Country,国家
#ST:State,州,省
#L:Locality,地区,城市
#O: Organization Name,组织名称,公司名称
#OU: Organization Unit Name,组织单位名称,公司部门
cfssl gencert -initca ca-csr.json | cfssljson -bare ca
#生成的文件:
#ca-key.pem:根证书私钥
#ca.pem:根证书
#ca.csr:根证书签发请求文件
#cfssl gencert -initca <CSRJSON>:使用 CSRJSON 文件生成生成新的证书和私钥。如果不添加管道符号,会直接把所有证书内容输出到屏幕。
#注意:CSRJSON 文件用的是相对路径,所以 cfssl 的时候需要 csr 文件的路径下执行,也可以指定为绝对路径。
#cfssljson 将 cfssl 生成的证书(json格式)变为文件承载式证书,-bare 用于命名生成的证书文件。
#-----------------------
#生成 etcd 服务器证书和私钥
cat > server-csr.json <<EOF
{
"CN": "etcd",
"hosts": [
"192.168.132.50",
"192.168.132.51",
"192.168.132.52"
],
"key": {
"algo": "rsa",
"size": 2048
},
"names": [
{
"C": "CN",
"L": "BeiJing",
"ST": "BeiJing"
}
]
}
EOF
#hosts:将所有 etcd 集群节点添加到 host 列表,需要指定所有 etcd 集群的节点 ip 或主机名不能使用网段,新增 etcd 服务器需要重新签发证书。
cfssl gencert -ca=ca.pem -ca-key=ca-key.pem -config=ca-config.json -profile=www server-csr.json | cfssljson -bare server
#生成的文件:
#server.csr:服务器的证书请求文件
#server-key.pem:服务器的私钥
#server.pem:服务器的数字签名证书
#-config:引用证书生成策略文件 ca-config.json
#-profile:指定证书生成策略文件中的的使用场景,比如 ca-config.json 中的 wwwvim etcd.sh
#!/bin/bash
# example: ./etcd.sh etcd01 192.168.132.50 etcd02=https://192.168.132.51:2380,etcd03=https://192.168.132.52:2380
#创建etcd配置文件/opt/etcd/cfg/etcd
ETCD_NAME=$1
ETCD_IP=$2
ETCD_CLUSTER=$3
WORK_DIR=/opt/etcd
cat > $WORK_DIR/cfg/etcd <<EOF
#[Member]
ETCD_NAME="${ETCD_NAME}"
ETCD_DATA_DIR="/var/lib/etcd/default.etcd"
ETCD_LISTEN_PEER_URLS="https://${ETCD_IP}:2380"
ETCD_LISTEN_CLIENT_URLS="https://${ETCD_IP}:2379"
#[Clustering]
ETCD_INITIAL_ADVERTISE_PEER_URLS="https://${ETCD_IP}:2380"
ETCD_ADVERTISE_CLIENT_URLS="https://${ETCD_IP}:2379"
ETCD_INITIAL_CLUSTER="etcd01=https://${ETCD_IP}:2380,${ETCD_CLUSTER}"
ETCD_INITIAL_CLUSTER_TOKEN="etcd-cluster"
ETCD_INITIAL_CLUSTER_STATE="new"
EOF
#Member:成员配置
#ETCD_NAME:节点名称,集群中唯一。成员名字,集群中必须具备唯一性,如etcd01
#ETCD_DATA_DIR:数据目录。指定节点的数据存储目录,这些数据包括节点ID,集群ID,集群初始化配置,Snapshot文件,若未指定-wal-dir,还会存储WAL文件;如果不指定会用缺省目录
#ETCD_LISTEN_PEER_URLS:集群通信监听地址。用于监听其他member发送信息的地址。ip为全0代表监听本机所有接口
#ETCD_LISTEN_CLIENT_URLS:客户端访问监听地址。用于监听etcd客户发送信息的地址。ip为全0代表监听本机所有接口
#Clustering:集群配置
#ETCD_INITIAL_ADVERTISE_PEER_URLS:集群通告地址。其他member使用,其他member通过该地址与本member交互信息。一定要保证从其他member能可访问该地址。静态配置方式下,该参数的value一定要同时在--initial-cluster参数中存在
#ETCD_ADVERTISE_CLIENT_URLS:客户端通告地址。etcd客户端使用,客户端通过该地址与本member交互信息。一定要保证从客户侧能可访问该地址
#ETCD_INITIAL_CLUSTER:集群节点地址。本member使用。描述集群中所有节点的信息,本member根据此信息去联系其他member
#ETCD_INITIAL_CLUSTER_TOKEN:集群Token。用于区分不同集群。本地如有多个集群要设为不同
#ETCD_INITIAL_CLUSTER_STATE:加入集群的当前状态,new是新集群,existing表示加入已有集群。
#创建etcd.service服务管理文件
cat > /usr/lib/systemd/system/etcd.service <<EOF
[Unit]
Description=Etcd Server
After=network.target
After=network-online.target
Wants=network-online.target
[Service]
Type=notify
EnvironmentFile=${WORK_DIR}/cfg/etcd
ExecStart=${WORK_DIR}/bin/etcd \
--name=\${ETCD_NAME} \
--data-dir=\${ETCD_DATA_DIR} \
--listen-peer-urls=\${ETCD_LISTEN_PEER_URLS} \
--listen-client-urls=\${ETCD_LISTEN_CLIENT_URLS},http://127.0.0.1:2379 \
--advertise-client-urls=\${ETCD_ADVERTISE_CLIENT_URLS} \
--initial-advertise-peer-urls=\${ETCD_INITIAL_ADVERTISE_PEER_URLS} \
--initial-cluster=\${ETCD_INITIAL_CLUSTER} \
--initial-cluster-token=\${ETCD_INITIAL_CLUSTER_TOKEN} \
--initial-cluster-state=new \
--cert-file=${WORK_DIR}/ssl/server.pem \
--key-file=${WORK_DIR}/ssl/server-key.pem \
--trusted-ca-file=${WORK_DIR}/ssl/ca.pem \
--peer-cert-file=${WORK_DIR}/ssl/server.pem \
--peer-key-file=${WORK_DIR}/ssl/server-key.pem \
--peer-trusted-ca-file=${WORK_DIR}/ssl/ca.pem
Restart=on-failure
LimitNOFILE=65536
[Install]
WantedBy=multi-user.target
EOF
#--listen-client-urls:用于指定etcd和客户端的连接端口
#--advertise-client-urls:用于指定etcd服务器之间通讯的端口,etcd有要求,如果--listen-client-urls被设置了,那么就必须同时设置--advertise-client-urls,所以即使设置和默认相同,也必须显式设置
#--peer开头的配置项用于指定集群内部TLS相关证书(peer 证书),这里全部都使用同一套证书认证
#不带--peer开头的的参数是指定 etcd 服务器TLS相关证书(server 证书),这里全部都使用同一套证书认证
systemctl daemon-reload
systemctl enable etcd
systemctl restart etcd
3.启动etcd服务
etcd二进制包地址:https://github.com/etcd-io/etcd/releases
# etcd 二进制包地址:https://github.com/etcd-io/etcd/releases#上传 etcd-v3.4.9-linux-amd64.tar.gz 到 /opt/k8s/ 目录中,解压 etcd 压缩包
cd /opt/k8s/
tar zxvf etcd-v3.4.9-linux-amd64.tar.gz
ls etcd-v3.4.9-linux-amd64
#etcd就是etcd 服务的启动命令,后面可跟各种启动参数
#etcdctl主要为etcd 服务提供了命令行操作#创建用于存放 etcd 配置文件,命令文件,证书的目录
mkdir -p /opt/etcd/{cfg,bin,ssl}
#移动etcd和etcdctl文件到自定义的命令文件中
mv /opt/k8s/etcd-v3.4.9-linux-amd64/etcd /opt/k8s/etcd-v3.4.9-linux-amd64/etcdctl /opt/etcd/bin/
cp /opt/k8s/etcd-cert/*.pem /opt/etcd/ssl/
#启动etcd服务
./opt/k8s/etcd.sh etcd01 192.168.132.50 etcd02=https://192.168.132.51:2380,etcd03=https://192.168.132.52:2380
#进入卡住状态等待其他节点加入,这里需要三台etcd服务同时启动,如果只启动其中一台后,服务会卡在那里,直到集群中所有etcd节点都已启动,可忽略这个情况
#另外打开一个窗口查看etcd进程是否正常
ps -ef | grep etcd#把etcd相关证书文件和命令文件全部拷贝到另外两个etcd集群节点
scp -r /opt/etcd/ root.168.132.51:/opt/
scp -r /opt/etcd/ root.168.132.52:/opt/
#把etcd服务管理文件拷贝到另外两个集群节点
scp /usr/lib/systemd/system/etcd.service root.168.132.51:/usr/lib/systemd/system/
scp /usr/lib/systemd/system/etcd.service root.168.132.52:/usr/lib/systemd/system/
#在etcd集群的其他节点配置对应的服务器名和ip地址
vim /opt/etcd/cfg/etcd#启动etcd服务
systemctl start etcd
systemctl enable etcd
systemctl status etcd
在 master01 节点(etcd01)上操作检查etcd群集状态
ln -s /opt/etcd/bin/etcd* /usr/local/bin
cd /opt/etcd/ssl
/opt/etcd/bin/etcdctl --cacert=/opt/etcd/ssl/ca.pem --cert=/opt/etcd/ssl/server.pem --key=/opt/etcd/ssl/server-key.pem --endpoints="https://192.168.132.50:2379,https://192.168.132.51:2379,https://192.168.132.52:2379" endpoint health --write-out=table
字段解析
--ca-file∶使用此CA证书验证启用https的服务器的证书
--cert-file∶识别HTTPS端使用SSL证书文件
--key-file∶使用此SSL密钥文件标识HTTPS客户端
--endpoints∶集群中以逗号分隔的机器地址列表
cluster-health∶检查etcd集群的运行状况检查etcd群集状态
ETCDCTL_API=3 /opt/etcd/bin/etcdctl --cacert=/opt/etcd/ssl/ca.pem --cert=/opt/etcd/ssl/server.pem --key=/opt/etcd/ssl/server-key.pem --endpoints="https://192.168.132.50:2379,https://192.168.132.51:2379,https://192.168.132.52:2379" endpoint health --write-out=table
ETCDCTL_API=3 /opt/etcd/bin/etcdctl --cacert=/opt/etcd/ssl/ca.pem --cert=/opt/etcd/ssl/server.pem --key=/opt/etcd/ssl/server-key.pem --endpoints="https://192.168.132.50:2379,https://192.168.132.51:2379,https://192.168.132.52:2379" --write-out=table member list
5、部署 docker引擎
所有 node 节点部署docker引擎
yum install -y yum-utils device-mapper-persistent-data lvm2yum-config-manager --add-repo https://mirrors.aliyun.com/docker-ce/linux/centos/docker-ce.repo
yum install -y docker-ce docker-ce-cli containerd.io
systemctl start docker.service
systemctl enable docker.service
6、部署 Master 组件
//在 master01 节点上操作#上传 master.zip 和 k8s-cert.sh 到 /opt/k8s 目录中,解压 master.zip 压缩包
cd /opt/k8s/
unzip master.zip
chmod +x *.sh
mkdir -p /opt/kubernetes/{bin,cfg,ssl,logs}
#创建用于生成CA证书、相关组件的证书和私钥的目录
mkdir /opt/k8s/k8s-cert
mv /opt/k8s/k8s-cert.sh /opt/k8s/k8s-cert
cd /opt/k8s/k8s-cert/
./k8s-cert.sh
ls *pem
admin-key.pem apiserver-key.pem ca-key.pem kube-proxy-key.pem
admin.pem apiserver.pem ca.pem kube-proxy.pem
cp ca*pem apiserver*pem /opt/kubernetes/ssl/#上传 kubernetes-server-linux-amd64.tar.gz 到 /opt/k8s/ 目录中,解压 kubernetes 压缩包
cd /opt/k8s/
tar zxvf kubernetes-server-linux-amd64.tar.gz
cd /opt/k8s/kubernetes/server/bin
cp kube-apiserver kubectl kube-controller-manager kube-scheduler /opt/kubernetes/bin/
ln -s /opt/kubernetes/bin/* /usr/local/bin/
#创建 bootstrap token 认证文件,apiserver 启动时会调用,然后就相当于在集群内创建了一个这个用户,接下来就可以用 RBAC 给他授权
cd /opt/k8s/
vim token.sh
#!/bin/bash
#获取随机数前16个字节内容,以十六进制格式输出,并删除其中空格
BOOTSTRAP_TOKEN=$(head -c 16 /dev/urandom | od -An -t x | tr -d ' ')
#生成 token.csv 文件,按照 Token序列号,用户名,UID,用户组 的格式生成
cat > /opt/kubernetes/cfg/token.csv <<EOF
${BOOTSTRAP_TOKEN},kubelet-bootstrap,10001,"system:kubelet-bootstrap"
EOF
chmod +x token.sh
./token.sh
cat /opt/kubernetes/cfg/token.csv
cd /opt/k8s/
./apiserver.sh 192.168.132.50 https://192.168.132.50:2379,https://192.168.132.51:2379,https://192.168.132.52:2379
ps aux | grep kube-apiserver
netstat -natp | grep 6443 #安全端口6443用于接收HTTPS请求,用于基于Token文件或客户端证书等认证
cd /opt/k8s/
#启动 scheduler 服务
./scheduler.sh
ps aux | grep kube-scheduler
#启动 controller-manager 服务
./controller-manager.sh
ps aux | grep kube-controller-manager
#生成kubectl连接集群的证书
./admin.sh
kubectl create clusterrolebinding cluster-system-anonymous --clusterrole=cluster-admin --user=system:anonymous
#通过kubectl工具查看当前集群组件状态
kubectl get cs
NAME STATUS MESSAGE ERROR
controller-manager Healthy ok
scheduler Healthy ok
etcd-2 Healthy {"health":"true"}
etcd-1 Healthy {"health":"true"}
etcd-0 Healthy {"health":"true"}
#查看版本信息
kubectl version
7、部署 Worker Node 组件
1. 在所有 node 节点上操作
#创建kubernetes工作目录mkdir -p /opt/kubernetes/{bin,cfg,ssl,logs}
#上传 node.zip 到 /opt 目录中,解压 node.zip 压缩包,获得kubelet.sh、proxy.sh
cd /opt/
unzip node.zip
chmod +x kubelet.sh proxy.sh
2.在 master01 节点上操作
#把 kubelet、kube-proxy 拷贝到 node 节点cd /opt/k8s/kubernetes/server/bin
scp kubelet kube-proxy root.168.132.51:/opt/kubernetes/bin/
scp kubelet kube-proxy root.168.132.52:/opt/kubernetes/bin/
#上传 kubeconfig.sh 文件到 /opt/k8s/kubeconfig 目录中,生成 kubeconfig 的配置文件
mkdir /opt/k8s/kubeconfig
cd /opt/k8s/kubeconfig
chmod +x kubeconfig.sh
./kubeconfig.sh 192.168.132.50 /opt/k8s/k8s-cert/
scp bootstrap.kubeconfig kube-proxy.kubeconfig root.168.132.51:/opt/kubernetes/cfg/
scp bootstrap.kubeconfig kube-proxy.kubeconfig root.168.132.52:/opt/kubernetes/cfg/
#RBAC授权,使用户 kubelet-bootstrap 能够有权限发起 CSR 请求
kubectl create clusterrolebinding kubelet-bootstrap --clusterrole=system:node-bootstrapper --user=kubelet-bootstrap
3.在 node01 节点上操作
//使用kubelet.sh脚本启动kubelet服务cd /opt/
chmod +x kubelet.sh
./kubelet.sh 192.168.132.51
//检查kubelet服务启动
ps aux | grep kubelet
//此时还没有生成证书
ls /opt/kubernetes/ssl/
4.在 master01 节点上操作,通过 CSR 请求
======在master1 节点上操作======//检查到node1 节点的kubelet 发起的CSR请求,Pending 表示等待集群给该节点签发证书.
kubectl get csr
//通过CSR请求
kubectl certificate approve node-csr-bLu1PxwAShW3_uhj6dmGslfqpQCM1xc76pqVv9uMONs
//再次查看CSR请求状态,Approved, Issued表示已授权CSR请求并签发证书
kubectl get csr
//查看群集节点状态,成功加入node1节点,由于网络插件还没有部署,节点会没有准备就绪 NotReady
kubectl get nodes
5.在 node01 节点上操作
#加载 ip_vs 模块for i in $(ls /usr/lib/modules/$(uname -r)/kernel/net/netfilter/ipvs|grep -o "^[^.]*");do echo $i; /sbin/modinfo -F filename $i >/dev/null 2>&1 && /sbin/modprobe $i;done
#启动proxy服务
cd /opt/
./proxy.sh 192.168.132.51
ps aux | grep kube-proxy======node2 节点部署======
//在node1 节点上将kubelet.sh、 proxy.sh 文件拷贝到node2 节点
cd /opt/
scp kubelet.sh proxy.sh root.168.132.52:/opt/
//node2 节点
//使用kubelet.sh脚本启动kubelet服务
cd /opt/
chmod +x kubelet.sh
./kubelet.sh 192.168.132.52
//在master1 节点上操作,检查到node2 节点的kubelet 发起的CSR请求,Pending 表示等待集群给该节点签发证书.
kubectl get csr
//通过CSR请求
kubect1 certificate approve node-csr-7vzjmyjEW4vspbg2SntK3k9_ed50SBgSxcse2qEyzdU
//再次查看CSR请求状态,Approved, Issued表示已授权CSR请求并签发证书
kubectl get csr
//查看群集节点状态,成功加入node1节点
kubectl get nodes
//在node2 节点 加载ip_vs模块
for i in $(ls /usr/lib/modules/$(uname -r)/kernel/net/netfilter/ipvs|grep -o "^[^.]*");do echo $i; /sbin/modinfo -F
filename $i >/dev/null 2>&1 && /sbin/modprobe $i;done
//使用proxy.sh脚本启动proxy服务
cd /opt/
chmod +x proxy.sh
./proxy.sh 192.168.132.52
systemctl status kube-proxy.service
8、部署网络组件
1.K8S中Pod 网络通信
1.Pod内容器与容器之间的通信
在同一个Pod 内的容器(Pod 内的容器是不会跨宿主机的)共享同一个网络命令空间,相当于它们在同一台机器上一样,可以用localhost地址访问彼此的端口。
2.同一个Node内Pod之间的通信
每个Pod都有一个真实的全局IP地址,同一个Node内的不同Pod之间可以直接采用对方Pod的IP地址进行通信,Pod1 与Pod2都是通过Veth连接到同一个docker0 网桥,网段相同,所以它们之,间可以直接通信。
3.不同Node 上Pod之间的通信
Pod地址与docker0 在同一网段,docker0网段与宿主机网卡是两个不同的网段,且不同Node之间的通信只能通过宿主机的物理网卡进行。
要想实现不同Node上Pod之间的通信,就必须想办法通过主机的物理网卡IP 地址进行寻址和通信。因此要满足两个条件: Pod 的 IP 不能冲突;将Pod的IP和所在的Node的IP关联起来,通过这个关联让不同Node上Pod之间直接通过内网IP地址通信。
4.Overlay Network
叠加网络,在二层或者三层基础网络上叠加的一种虚拟网络技术模式,该网络中的主机通过虚拟链路隧道连接起来(类似于VPN)。
5.VXLAN
将源数据包封装到UDP中,并使用基础网络的IP/MAC作为外层报文头进行封装,然后在以太网上传输,到达目的地后由隧道端点解封装并将数据发送给目标地址。
6.Flannel
Flannel的功能是让集群中的不同节点主机创建的Docker容器都具有全集群唯一的虚拟IP地址。
Flannel是Overlay网络的一种,也是将TCP源数据包封装在另一种网络包里面进行路由转发和通信,目前己经支持UDP、VXLAN、host-CW等数据转发方式。
7.Flannel UDP模式工作原理
数据从node01上Pod的源容器中发出后,经由所在主机的docker0 虚拟网卡转发到flannel.1 虚拟网卡,flanneld 服务监听在flannel.1虚拟网卡的另外一端。
Flannel通过Etcd服务维护了一张节点间的路由表。源主机node01的flanneld服务将原本的数据内容封装到UDP 中后根据自己的路由表通过物理网卡投递给目的节点node02的flanneld服务,数据到达以后被解包,然后直接进入目的节点的 flannel.1虚拟网卡,之后被转发到目的主机的docker0 虚拟网卡,最后就像本机容器通信一样由docker0 转发到目标容器。
8.ETCD之Flannel提供说明
存储管理Flannel可分配的IP地址段资源
监控ETCD中每个Pod的实际地址,并在内存中建立维护Pod节点路由表
由于udp模式是在用户态做转发,会多一次报文隧道封装,因此性能上会比在内核态做转发的 vxlan模式差。
9.vxlan模式:
vxlan是种overlay (虚拟隧道通信)技术,通过三层网络搭建虚拟的二层网络,跟udp 模式具体实现不太一样;
10.Flannel vx1an模式的工作l原理:
vxclan在内核当中实现,当数据包使用vxlan设备发送数据时,会打上vlxan的头部信息,在发送出去,对端解包,flanel .1网卡把原始报文发送到目的服务器。
2.部署 flannel
在 node01 节点上操作
#上传 cni-plugins-linux-amd64-v0.8.6.tgz 和 flannel.tar 到 /opt 目录中cd /opt/
docker load -i flannel.tar
mkdir -p /opt/cni/bin
tar zxvf cni-plugins-linux-amd64-v0.8.6.tgz -C /opt/cni/bin
在 master01 节点上操作
#上传 kube-flannel.yml 文件到 /opt/k8s 目录中,部署 CNI 网络cd /opt/k8s
kubectl apply -f kube-flannel.yml
kubectl get pods -n kube-system
kubectl get nodes