当前位置 : 主页 > 编程语言 > python >

Python绘制图像(Matplotlib)(Ⅹ)

来源:互联网 收集:自由互联 发布时间:2022-06-24
缩写 颜色名 缩写 颜色名 缩写 颜色名 缩写 颜色名 b 蓝色 g 绿色 r 红色 c 青色 m 洋红色 y 黄色 k 黑色 w 白色 import matplotlib as mpl import matplotlib . pyplot as plt import numpy as np 通过属性字典r

缩写

颜色名

缩写

颜色名

缩写

颜色名

缩写

颜色名

b

蓝色

g

绿色

r

红色

c

青色

m

洋红色

y

黄色

k

黑色

w

白色

import matplotlib as mpl
import matplotlib.pyplot as plt
import numpy as np
  • 通过属性字典rcParams调整字体属性值和文本属性值
    Python绘制图像(Matplotlib)(Ⅹ)_数据可视化
  • def no1():
    """
    通过属性字典rcParams调整字体属性值和文本属性值
    :return:
    """
    # line properties in change
    plt.rcParams["lines.linewidth"] = 8.0
    plt.rcParams["lines.linestyle"] = "--"

    # font properties in change
    plt.rcParams["font.family"] = "serif"
    plt.rcParams["font.serif"] = "New Century Schoolbook"
    plt.rcParams["font.style"] = "normal"
    plt.rcParams["font.variant"] = "small-caps"
    plt.rcParams["font.weight"] = "black"
    plt.rcParams["font.size"] = 12.0

    # text properties in change
    plt.rcParams["text.color"] = "blue"

    plt.axes([0.1, 0.1, .8, .8], frameon=True, fc='y', aspect='equal')
    plt.plot(2 + np.arange(3), [0, 1, 0])
    plt.title("Line Chart")

    plt.text(2.25, .8, "FONT")

    plt.savefig(r"E:\Programmer\PYTHON\Matplotlib实践\figure\Figure(Unit "
    r"10)\no1.png")
    plt.show()
  • 字体主要属性的可视化展示
    Python绘制图像(Matplotlib)(Ⅹ)_属性值_02
  • def no2():
    """
    字体主要属性的可视化展示
    :return:
    """
    fig = plt.figure()
    ax = fig.add_subplot(111)
    families = ["serif", "sans-serif", "fantasy", "monospace"]

    ax.text(-1, 1, "family", fontsize=18, horizontalalignment='center')

    pi = (0.9, 0.8, 0.7, 0.6, 0.5, 0.4, 0.3, 0.2, 0.1)

    for i, family in enumerate(families):
    ax.text(-1, pi[i], family, family=family, horizontalalignment='center')

    sizes = ["xx-small", "x-small", "small", "medium", "large", "x-large",
    "xx-large"]

    ax.text(-0.5, 1, "size", fontsize=18, horizontalalignment="center")

    for i, size in enumerate(sizes):
    ax.text(-0.5, pi[i], size, size=size, horizontalalignment="center")

    styles = ["normal", "italic", "oblique"]

    ax.text(0, 1, "style", fontsize=18, horizontalalignment="center")

    for i, style in enumerate(styles):
    ax.text(0, pi[i], style, family="sans-serif", style=style,
    horizontalalignment='center')

    variants = ["normal", "small-caps"]

    ax.text(0.5, 1, "variant", fontsize=18, horizontalalignment='center')

    for i, variant in enumerate(variants):
    ax.text(0.5, pi[i], variant, family="serif", variant=variant,
    horizontalalignment='center')

    weights = ["light", "normal", "semibold", "bold", "black"]
    ax.text(1, 1, "weight", fontsize=18, horizontalalignment='center')

    for i, weight in enumerate(weights):
    ax.text(1, pi[i], weight, weight=weight,
    horizontalalignment='center')

    ax.axis([-1.5, 1.5, 0.1, 1.1])
    ax.set_xticks([])
    ax.set_yticks([])

    plt.savefig(r"E:\Programmer\PYTHON\Matplotlib实践\figure\Figure(Unit "
    r"10)\no2.png")
    plt.show()
  • 模拟图的颜色使用模式
    Python绘制图像(Matplotlib)(Ⅹ)_matplotlib_03
  • def no3():
    """
    模拟图的颜色使用模式
    :return:
    """
    rd = np.random.rand(10, 10)
    plt.pcolor(rd, cmap="BuPu")
    plt.colorbar()
    plt.savefig(r"E:\Programmer\PYTHON\Matplotlib实践\figure\Figure(Unit "
    r"10)\no3.png")
    plt.show()
  • 散点图的颜色使用模式
    Python绘制图像(Matplotlib)(Ⅹ)_matplotlib_04
  • def no4():
    """
    散点图的颜色使用模式
    :return:
    """
    a = np.random.randn(100)
    b = np.random.randn(100)
    exponent = 2

    plt.subplot(131)
    plt.scatter(
    a,
    b,
    np.sqrt(
    np.power(
    a,
    exponent) +
    np.power(
    b,
    exponent)) *
    100,
    c=np.random.rand(100),
    cmap=mpl.cm.jet,
    marker='o',
    zorder=1)
    plt.subplot(132)
    plt.scatter(a, b, 50, marker='o', zorder=10)

    plt.subplot(133)
    plt.scatter(a, b, 50, c=np.random.rand(100),
    cmap=mpl.cm.BuPu,
    marker='+',
    zorder=100)

    plt.savefig(r"E:\Programmer\PYTHON\Matplotlib实践\figure\Figure(Unit "
    r"10)\no4.png")
    plt.show()
  • 极区图的颜色使用模式
    Python绘制图像(Matplotlib)(Ⅹ)_matplotlib_05
  • def no5():
    """
    极区图的颜色使用模式
    :return:
    """
    barSlices = 12
    theta = np.linspace(0.0, 2 * np.pi, barSlices, endpoint=False)
    radii = 30 * np.random.rand(barSlices)
    width = np.pi / 4 * np.random.rand(barSlices)

    fig = plt.figure()
    ax = fig.add_subplot(111, polar=True)

    bars = ax.bar(theta, radii, width=width, bottom=0.0)

    for r, bar in zip(radii, bars):
    bar.set_facecolor(mpl.cm.Accent(r / 30.))
    bar.set_alpha(r / 30.)

    plt.savefig(r"E:\Programmer\PYTHON\Matplotlib实践\figure\Figure(Unit "
    r"10)\no5.png")
    plt.show()
  • 等高线的颜色使用模式
    Python绘制图像(Matplotlib)(Ⅹ)_属性值_06
  • def no6():
    """
    等高线的颜色使用模式
    :return:
    """
    s = np.linspace(-0.5, 0.5, 1000)

    x, y = np.meshgrid(s, s)

    fig, ax = plt.subplots(1, 1)

    z = x**2 + y**2 + np.power(x**2 + y**2, 2)

    cs = plt.contour(x, y, z, cmap=mpl.cm.hot)

    plt.clabel(cs, fmt="%3.2f")

    plt.colorbar(cs)

    plt.savefig(r"E:\Programmer\PYTHON\Matplotlib实践\figure\Figure(Unit "
    r"10)\no6.png")
    plt.show()
    • 本篇博文特别感谢刘大成的《Python数据可视化之matplotlib实践》


    【转自:美国高防服务器 http://www.558idc.com/usa.html转载请说明出处】
    上一篇:Python绘制图像(Matplotlib)(Ⅷ)
    下一篇:没有了
    网友评论