题目描述】一个旅行者有一个最多能装V公斤的背包,现在有n件物品,它们的重量分别是W1,W2,...,Wn,它们的价值分别为C1,C2,...,Cn。有的物品只可以取一次(01背包),有的物品可以取
题目描述】 一个旅行者有一个最多能装V公斤的背包,现在有n件物品,它们的重量分别是W1,W2,...,Wn ,它们的价值分别为C1,C2,...,Cn 。有的物品只可以取一次(01背包),有的物品可以取无限次(完全背包),有的物品可以取的次数有一个上限(多重背包)。求解将哪些物品装入背包可使这些物品的费用总和不超过背包容量,且价值总和最大。
【输入】 第一行:二个整数,M(背包容量,M<=200),N(物品数量,N<=30);
第2..N+1行:每行三个整数Wi,Ci,Pi ,前两个整数分别表示每个物品的重量,价值,第三个整数若为0,则说明此物品可以购买无数件,若为其他数字,则为此物品可购买的最多件数(Pi )。
【输出】 仅一行,一个数,表示最大总价值。
【输入样例】 10 3 2 1 0 3 3 1 4 5 4 【输出样例】 11 【提示】 选第一件物品1件和第三件物品2件。
#include <iostream>
#include<cmath>
#include<vector>
using namespace std;
const int N=35;
int m,n; // 背包容量、物品数
int dp[205]; // 在容量不超过i时所能获得的最大的价值
int w[N],c[N],p[N]; // 重量、价值、数量
int main()
{
ios::sync_with_stdio(false);
cin.tie(0);
cout.tie(0);
cin>>m>>n;
for(int i=1;i<=n;i++)
{
cin>>w[i]>>c[i]>>p[i];
}
for(int i=1;i<=n;i++) // 对每一种物品
{
if(p[i]==0) // 如果为0是完全背包
{
for(int j=w[i];j<=m;j++)// 完全背包当前容量从小到大
{
dp[j] = max(dp[j],dp[j-w[i]]+c[i]);
}
}else // 大于0是 01背包或多重背包
{
for(int j=m;j>=w[i];j--)// 多重背包和01背包当前容量从大到小
{
for(int k=0;k<=p[i];k++)
{
if(j<k*w[i])break; // 当容量不够时要及时退出
dp[j]= max(dp[j],dp[j-k*w[i]]+k*c[i]);
}
}
}
}
cout<<dp[m];
return 0;
}