文章目录 get the train data: python code: python code(initial version): result: get the train data: https://github.com/xuchaoxin1375/learnPython python code: from typing import
文章目录
- get the train data:
- python code:
- python code(initial version):
- result:
get the train data:
https://github.com/xuchaoxin1375/learnPython
python code:
from typing import Iterablefrom sklearn.neighbors import KNeighborsClassifier
from sklearn.naive_bayes import GaussianNB
from sklearn.linear_model import LogisticRegression
from sklearn.neural_network import MLPClassifier
from sklearn.ensemble import RandomForestClassifier
from sklearn.ensemble import GradientBoostingClassifier
import numpy as np
import random
''' 本程序采用python3的注解,标记出变量/函数的类型,提高可读性 '''
def get_percents(protein: str) -> list[float]:
'''
计算蛋白质序列上各种氨基酸占该氨基酸的比例,以此提取特征值做归一化处理
according the protein to calculate the percentes: '''
aa20: tuple = ('A', 'R', 'N', 'D', 'C', 'Q', 'E', 'G', 'H', 'I',
'L', 'K', 'M', 'F', 'P', 'S', 'T', 'W', 'Y', 'V')
result_list: list[float] = []
protein_len: int = len(protein)
# We do the normalization by counting the animo ratio:
for amino in aa20:
# print(amino,end=" ")
# dict={amino:protein.count(amino)/protein_len}
percent: float = protein.count(amino)/protein_len
result_list.append(percent)
return result_list
def get_protein_sequences1(file: str) -> list[str]:
''' get protein sequences from file '''
sequences: list[str] = []
with open(file, "r") as file_input_stream:
# 从文件中读取蛋白质序列
for line in file_input_stream:
# 每次读取一行(str)
line = line.split(" ")
sequences.append(line[2].strip())
return sequences
def get_protein_sequences2(file: str) -> list[str]:
''' get protein sequences from file2 '''
sequences: list[str] = []
with open(file, "r") as file_input_stream:
for line in file_input_stream:
line = line.split(" ")
sequences.append(line[1].strip())
return sequences
def get_protein_labels(file: str):
''' get labels of each protein from file '''
labels: list[int] = []
with open(file, "r") as file_input_stream:
for line in file_input_stream:
# the line is <class 'str'>
line = line.split(" ")
labels.append(int(line[1]))
return labels
def output_file(result_iterable: Iterable, result_file: str, classifier=""):
with open(result_file, "w") as fos:
result = ""
# print(str(result_list))
# fos.write(classifier+str(result_list))
print(classifier)
for char in result_iterable:
result = result+(str(char)+'\n')
print(result)
result.strip()
fos.write(result)
prefix = "D:/OneDrive - pop.zjgsu.edu.cn/PythonPath/exp7/"
ProSeqs_Test = prefix+"ProSeqs_Test.txt"
ProSeqs_Train = prefix+"ProSeqs_Train.txt"
x_list: list[str] = get_protein_sequences1(ProSeqs_Train)
y_list: list[int] = get_protein_labels(ProSeqs_Train)
x_percents = [get_percents(protein) for protein in x_list]
x_list_test = get_protein_sequences2(ProSeqs_Test)
x_percents_test = [get_percents(protein) for protein in x_list_test]
""" get the numerical data set and corresponding labels: """
x_array: np.ndarray = np.array(
x_percents) # 注意,ndarry类型的对象构造函数这里不是用ndarray(),而是numpy.array()
y_array: np.ndarray = np.array(y_list)
x_array_test: np.ndarray = np.array(x_percents_test)
# print(x_array_test)
clf_GNB = GaussianNB()
clf_KNN = KNeighborsClassifier()
clf_LR = LogisticRegression()
clf_MLP = MLPClassifier()
clf_RF = RandomForestClassifier()
clf_GB = GradientBoostingClassifier()
def estimate_accuracy(x_array: np.ndarray, y_array: np.ndarray, estimate_scale: float, clf):
""" 通过随机化手段(将产生一系列的随机索引,方便对多组执行同样的随机选择(保持配套),
这种做法相较于直接再数据容器(比如ndarray上直接抽取子集要来的灵活方便:引入第三方中介)) """
size = len(x_array)
estimate_scale_int = int(size/100*estimate_scale)
real_scale = size-estimate_scale_int
true_list = [True for index in range(estimate_scale_int)]
false_list = [False for index in range(real_scale)]
bools = true_list+false_list
random.shuffle(bools)
# print(bools)
estimate_accuracy_x: np.ndarray = x_array[bools]
estimate_accuracy_y: np.ndarray = y_array[bools]
# fit the modle(classifier)
clf.fit(estimate_accuracy_x, estimate_accuracy_y)
# get the data set to be predict(estimate)
bools_reverse = [not bool_ for bool_ in bools]
estimate_accuracy_x_test = x_array[bools_reverse]
real_result = y_array[bools_reverse]
# predict according the x segment:
estimate_predict_result = clf.predict(estimate_accuracy_x_test)
# calculate the accuracy:
''' the GNB will be expecting has the 80% accuracy or so: '''
length = len(estimate_predict_result)
count = 0
for label1, label2 in zip(estimate_predict_result, real_result):
if label1 == label2:
count += 1
else:
# print(label1," ",label2)
pass
# print the len to certain the result is calculate the proper case:
accuracy = count/length
# print(accuracy)
# print(length, "elements were predicted with model:", clf)
return accuracy
def get_average_accuracy(clf=clf_GNB, times: int = 10, estimate_scale=95):
count_probility = 0
count = times
while count:
count_probility += estimate_accuracy(x_array,
y_array, estimate_scale, clf)
count -= 1
return count_probility/times
""" 将结果写入文件: """
# print(len(x_array), len(y_array))
# clf.fit(x_array, y_array)
# result_iterable = clf.predict(x_array_test)
# print(result_iterable)
# prediction_result = prefix+"preds.txt"
# output_file(result_iterable, prediction_result)
if __name__ == "__main__":
# estimate_accuracy(x_array,y_array,95.5,clf_KNN)
# """ clf_MLP, """
classifiers: list = [clf_GNB, clf_KNN, clf_LR, clf_RF, clf_GB]
sort_list = []
for clf in classifiers:
result = get_average_accuracy(times=10,estimate_scale=98,clf=clf)
print("in average result with:", clf, result)
sort_list.append((result, clf))
# print(sort_list)
sort_list.sort(key=lambda tuple: tuple[0], reverse=True)
for item in sort_list:
print(item)
python code(initial version):
from sklearn.neighbors import KNeighborsClassifierfrom sklearn.naive_bayes import GaussianNB
import numpy as np
def get_percents(protein):
''' according the protein to calculate the percentes: '''
aa20 = ('A', 'R', 'N', 'D', 'C', 'Q', 'E', 'G', 'H', 'I',
'L', 'K', 'M', 'F', 'P', 'S', 'T', 'W', 'Y', 'V')
result_list = []
protein_len = len(protein)
for amino in aa20:
# print(amino,end=" ")
# dict={amino:protein.count(amino)/protein_len}
percent = protein.count(amino)/protein_len
result_list.append(percent)
return result_list
def get_protein_sequences1(file):
''' get protein sequences from file '''
sequences = []
with open(file, "r") as file_input_stream:
for line in file_input_stream:
line = line.split(" ")
sequences.append(line[2].strip())
return sequences
def get_protein_sequences2(file):
''' get protein sequences from file '''
sequences = []
with open(file, "r") as file_input_stream:
for line in file_input_stream:
line = line.split(" ")
sequences.append(line[1].strip())
return sequences
def get_protein_labels(file):
''' get labels of each protein from file '''
labels = []
with open(file, "r") as file_input_stream:
for line in file_input_stream:
# the line is <class 'str'>
line = line.split(" ")
labels.append(int(line[1]))
return labels
def output_file(result_list, result_file, classifier=""):
with open(result_file, "w") as fos:
result = ""
# print(str(result_list))
# fos.write(classifier+str(result_list))
for char in result_list:
result = result+(str(char)+'\n')
print(result)
result.strip()
fos.write(result)
prefix = "D:/OneDrive - pop.zjgsu.edu.cn/PythonPath/exp7/"
ProSeqs_Test = prefix+"ProSeqs_Test.txt"
ProSeqs_Train = prefix+"ProSeqs_Train.txt"
x_list = get_protein_sequences1(ProSeqs_Train)
y_list = get_protein_labels(ProSeqs_Train)
# print(y_list)
# with open(ProSeqs_Train, "r") as file_input_stream:
# # line=file_input_stream.readline()
# for line in file_input_stream:
# # the line is <class 'str'>
# line = line.split(" ")
# input_list.append(line[2].strip())
# # print(line)
# # print(type(line))
# # break
# y.append(int(line[1]))
# debug
# file_input_stream.close()
# print(input_list)
# print(x_list)
x_percents = [get_percents(protein) for protein in x_list]
# print(x_percents)
# print(len(x_percents))
x_array = np.array(x_percents) # 注意不是用ndarray()
y_array = np.array(y_list)
#degug
# print(len(x_array))
# print(x_array, "\n\n", y_array)
# print(len(x))
# print(x)
# print(y)
x_list_test = get_protein_sequences2(ProSeqs_Test)
x_percents_test = [get_percents(protein) for protein in x_list_test]
x_array_test = np.array(x_percents_test)
# print(x_array_test)
clf = GaussianNB()
# clf=KNeighborsClassifier(n_neighbors=55)
def estimate_accuracy(x_array,y_array,sample_num=1500):
sample_num=1500
estimate_accuracy_x=x_array[:sample_num]
estimate_accuracy_y=y_array[:sample_num]
# print(estimate_accuracy_x,estimate_accuracy_y)
# print(len(estimate_accuracy_x))
#fit the modle(classifier)
clf.fit(estimate_accuracy_x,estimate_accuracy_y)
estimate_accuracy_x_test=x_array[sample_num:]
real_result=y_array[sample_num:]
# predict according the x segment:
estimate_result=clf.predict(estimate_accuracy_x_test)
# calculate the accuracy:
''' the GNB will be expecting has the 80% accuracy or so: '''
len=len(estimate_result)
count=0
for label1,label2 in zip(estimate_result,real_result):
if label1==label2:
count+=1
else :
pass
# print(label1," ",label2)
# print the len to certain the result is calculate the proper case:
print(count/len,len,"elements were predicted")
# print(len(x_array), len(y_array))
clf.fit(x_array, y_array)
result_list = clf.predict(x_array_test)
print(result_list)
prediction_result = prefix+"preds.txt"
output_file(result_list, prediction_result)
result: